

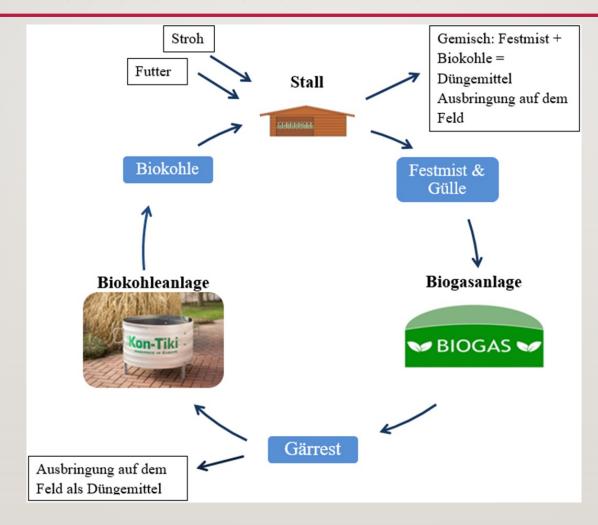
EINFLUSS GÄRRESTEBASIERTER PYROLYSEKOHLE AUF EMISSIONEN VON RINDERFESTMIST

FRANKENFÖRDER FORSCHUNGSGESELLSCHAFT MBH

M.SC. ANNA-LUISE BÖHM

Abschlussveranstaltung des Projekts Gärprodukte zur Verbesserung der Stallhaltung und der Bodenstruktur - ein integraler Ansatz Seddiner See, 30. März 2023

STOFFKREISLAUFMODELL EINES LANDWIRTSCHAFTLICHEN BETRIEBES MIT INTEGRIERTER BIOGAS- UND BIOKOHLEANLAGE



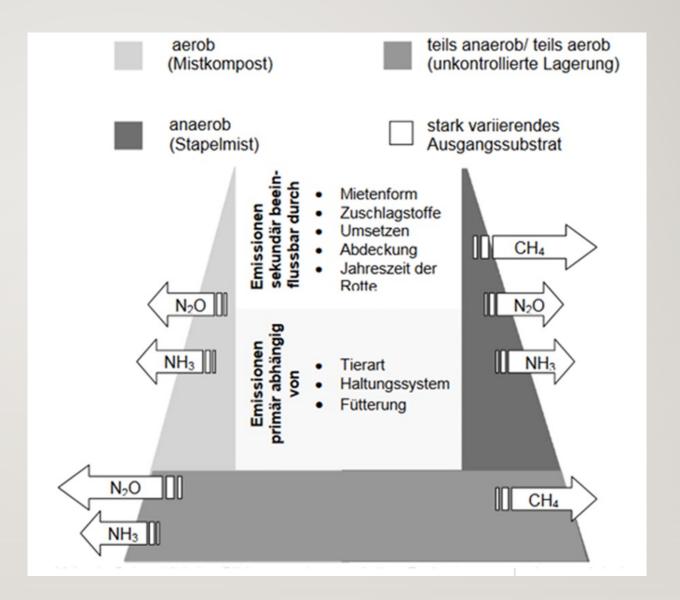


Abb. I: Bildung und potenzielle Freisetzung von Ammoniak, Lachgas und Methan

(Pfeillänge steht für die potenziell emittierte Menge), sowie Parameter zur Emissionsregulierung bei unterschiedlichen Aufbereitungsverfahren von Festmist. (OLTMANNS ET AL. 2004)

Tab I:

Versuchsanordnung

= Rinderfestmist

= Biokohle

BKg = gärrestbasierte

Pyrolysekohle

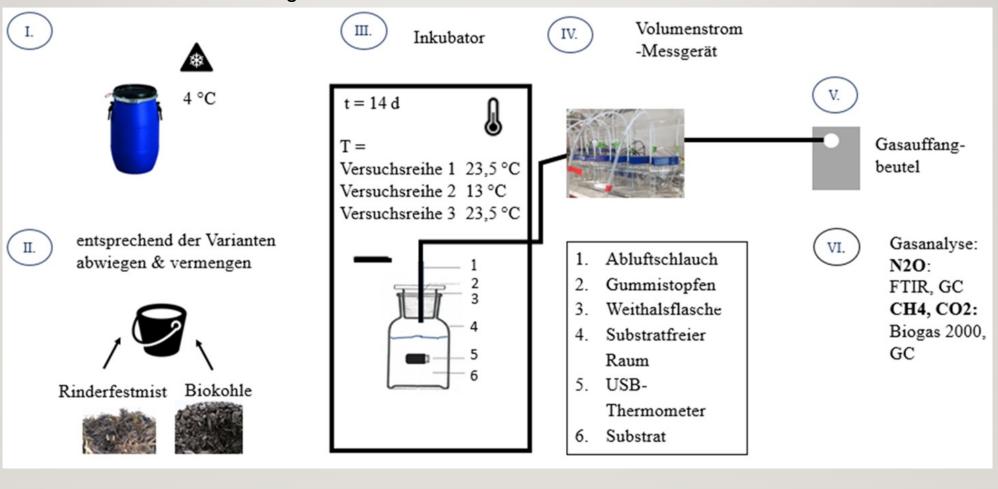
BKa = Aktivkohle

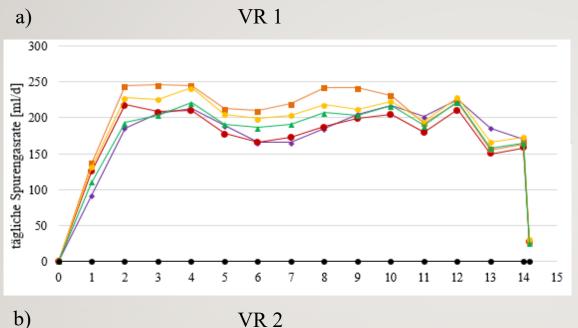
= Frischmasse

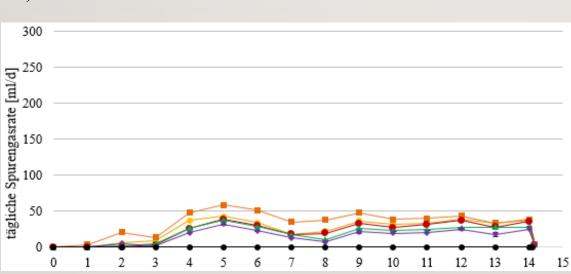
= Trockenmasse

		Datum	Substrate	Variante	Substratmenge [g]				DV (TM)/	
Versuchs- reihe	Temp. [°C]				RM		BK		BK(TM)/ RM(TM)	*
					FM	(TM)	FM	(TM)	[%]	n _i
				0	450	(124,3)	0	0	0	4
	23,5		RM/BKg TM: 27,62 % / 45,05 %	5	450	(124,3)	13,8	(6,2)	5	4
1				25	450	(124,3)	69,0	(31,1)	25	4
1				25o	450	(124,3)	69,0	(31,1)	25	4
				50	450	(124,3)	138,0	(62,2)	50	4
				Kontrolle	0	0	276	(124,3)	100	3
2	13		RM/BKgTM: 27,62 % / 45,05 %	0	450	(124,3)	0	0	0	4
				5	450	(124,3)	13,8	(6,2)	5	4
				25	450	(124,3)	69,0	(31,1)	25	4
				25o	450	(124,3)	69,0	(31,1)	25	4
				50	450	(124,3)	138,0	(62,2)	50	4
				Kontrolle	0	0	276	(124,3)	100	3
3 2	23,5	3,5 02.05.	RM/BK _a TM: 28,19 % / 95,34 %	0	450	(126,8)	0	0	0	4
				5	450	(126,8)	6,7	(6,3)	5	4
				25	450	(126,8)	33,3	(31,7)	25	4
				25o	450	(126,8)	33,3	(31,7)	25	4
				50	450	(126,8)	66,5	(63,4)	50	4
				Kontrolle	0	0	133,0	(126,8)	100	3

Anzahl der Wiederholungen




Abb. 2: Schematische Darstellung des Versuchsablaufs



FELDEODUKEE

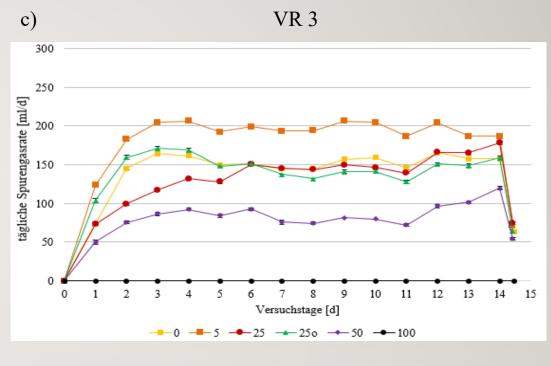


Abb. 3: Darstellung der **täglichen Spurengasrate** der Rindermist-Biokohle Gemische mit einem Biokohleanteil 0, 5, 25, 250, 50 und 100 % TM

- a) Versuchsreihe I (Pyrolysekohle, 23,5 °C)
- o) Versuchsreihe 2 (Pyrolysekohle, 13 °C)
- c) Versuchsreihe 3 (Aktivkohle, 23,5 °C)

(o = oberflächlich appliziert)

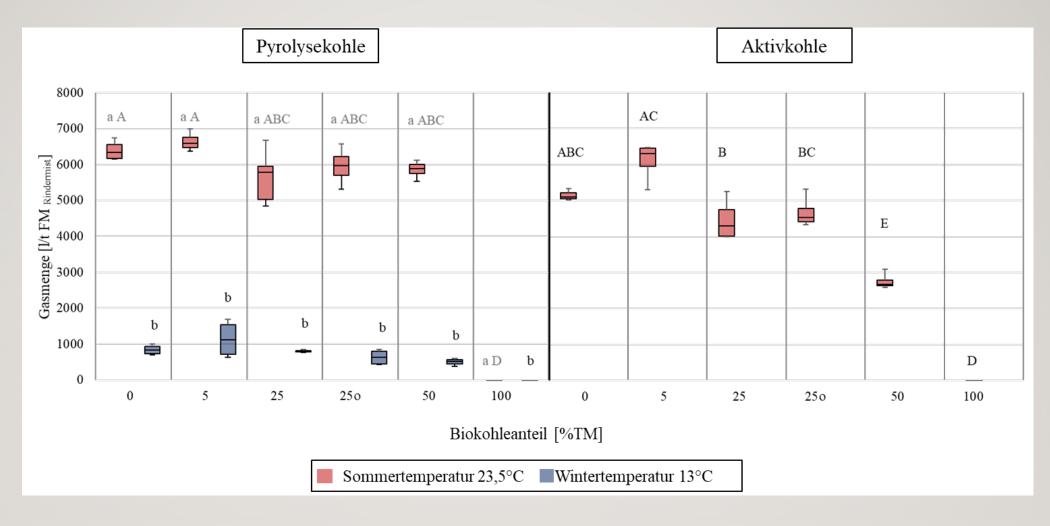



Abb. 4: **Kumulierte Spurengasmengen** der Rindermist-Biokohle Gemische mit einem prozentualen Biokohleanteil von 0, 5, 25, 250, 50 und 100 % TM, .Versuchszeit 14 d, n = 4, 250 = 25% Biokohleanteil oberflächlich appliziert, Darstellung der homogenen Gruppen: Großbuchstaben = Einfluss der Biokohletypen, Kleinbuchstaben = Einfluss der Temperatur

GELPFOGUKE

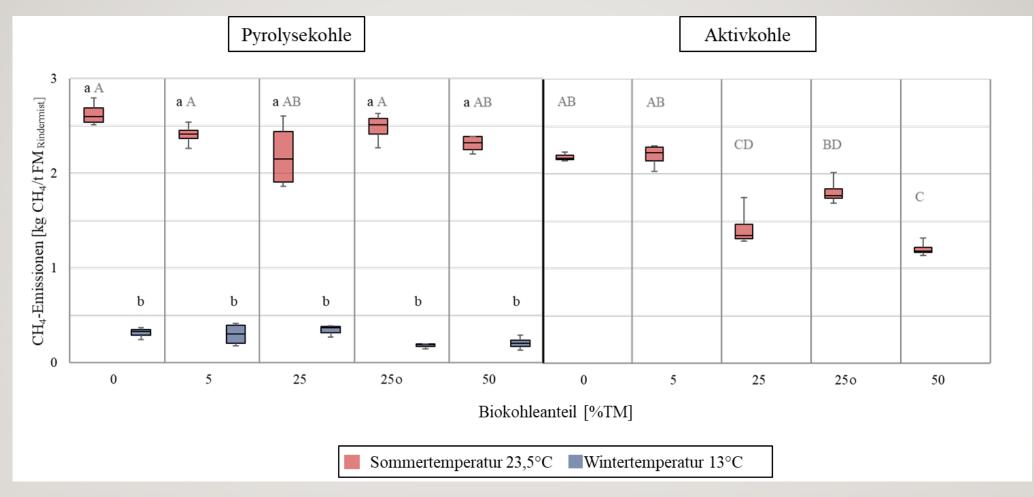


Abb. 5: **Methankonzentrationen** der 3 Versuchsreihen der Rindermist-Biokohle Gemische mit einem Biokohleanteil 0, 5, 25, 250 und 50 % TM, Versuchszeit 14 d, n = 4, 250 = 25% Biokohleanteil oberflächlich appliziert, Darstellung der homogenen Gruppen: Großbuchstaben = Einfluss der Biokohletypen, Kleinbuchstaben = Einfluss der Temperatur

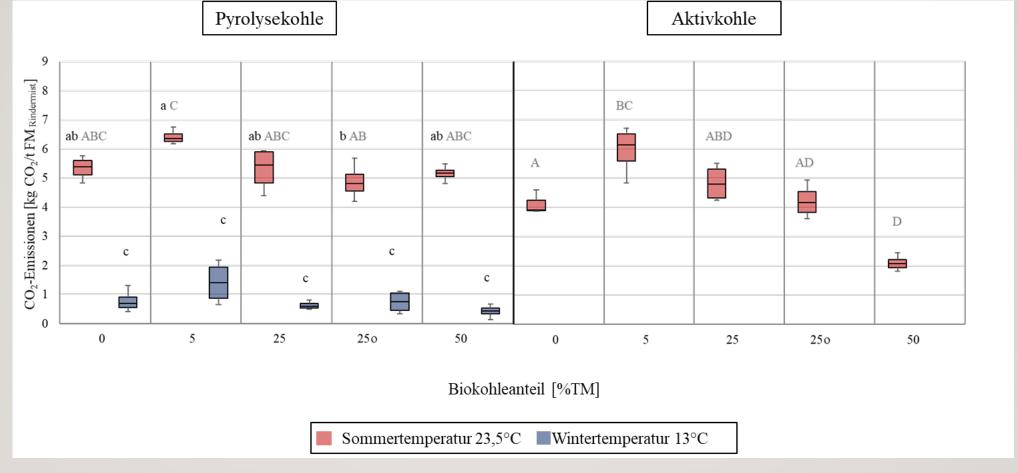


Abb. 6: Kohlenstoffdioxidkonzentration der 3 Versuchsreihen der Rindermist-Biokohle Gemische mit einem Biokohleanteil 0, 5, 25, 250 und 50 %, n = 4, Versuchszeit 14 d, 250 = 25% Biokohleanteil oberflächlich appliziert, Darstellung der homogenen Gruppen: Großbuchstaben = Einfluss der Biokohletypen, Kleinbuchstaben = Einfluss der Temperatur

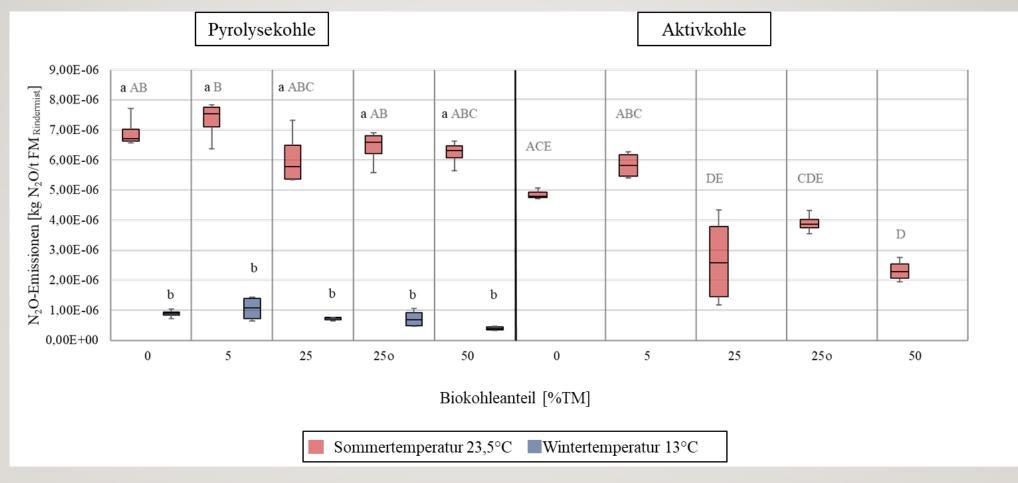


Abb. 7: **Lachgaskonzentration** der 3 Versuchsreihen der Rindermist-Biokohle Gemische mit einem Biokohleanteil 0, 5, 25, 250 und 50 % mit der dazugehörigen Standardabweichung (n=4), Versuchszeit 14 d, 250 = 25% Biokohleanteil oberflächlich appliziert, Darstellung der homogenen Gruppen: Großbuchstaben = Einfluss der Biokohletypen, Kleinbuchstaben = Einfluss der Temperatur

FEIFORGURG

Tab. 2: Treibhauspotentiale der Varianten der drei Versuchsreihen

VR*	BK-	CO_2	CH ₄		N_2	0	$\sum CO_{2-eq}$	THG-
V 1X	Anteil	CO ₂	C114		112	.	∠ CO2-eq	Bildung
		MW	MW	$\mathrm{CO}_{2 ext{-}\mathrm{eq}}$	MW	CO _{2-eq}		
	[%TM]	$[kg/t\ FM_{Rindermist}]$	[kg/t FM _{Rindermist}] [k	g CO _{2-eq} /t FM]	[kg/t FMRindermist]	[kg CO _{2-eq} /t FM]	[kg CO _{2-eq} /t FM]	[%]
	0	5,33	2,63	65,78	6,93E-06	2,06E-03	71,11	0,00
	5	6,41	2,41	60,30	7,31E-06	2,18E-03	66,71	-6,18
1	25	5,31	2,19	54,87	6,06E-06	1,81E-03	60,18	-15,37
	50	5,15	2,31	57,82	6,23E-06	1,86E-03	62,97	-11,45
	25o	4,88	2,48	62,07	6,42E-06	1,91E-03	66,95	-5,86
	0	0,77	0,32	7,98	8,87E-07	2,64E-04	8,75	0,00
	5	<u>1,41</u>	0,30	7,50	1,06E-06	3,15E-04	8,91	1,84
2	25	0,63	0,34	8,59	7,13E-07	2,13E-04	9,22	5,43
	50	0,42	0,21	5,22	3,98E-07	1,19E-04	5,64	-35,48
	25o	0,74	0.18	4,53	7,27E-07	2,17E-04	5,27	-39,76
	0	4,12	2,18	54,43	4,85E-06	1,45E-03	58,56	0,00
	5	5,95	2,19	54,80	5,82E-06	1,74E-03	60,75	3,75
3	25	4,83	1,43	35,84	2,66E-06	7,94E-04	40,67	-30,55
	50	2,09	1,21	30,21	2,32E-06	6,90E-04	32,31	-44,83
	25o	4,21	1,81	45,26	3,90E-06	1,16E-03	49,48	-15,51

VR = Versuchsreihe, BK = Biokohle, THG = Treibhausgas

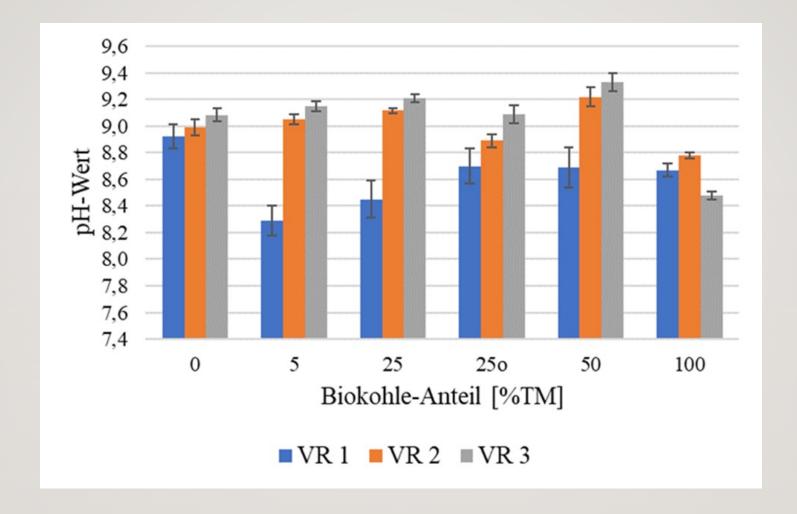


Abb. 9: pH-Wert der Rinderfestmist-Biokohle-Gemische nach Versuchsende (14 d).VR I = Versuchsreihe I (Pyrolysekohle, 23,5 °C),VR 2 = Versuchsreihe 2 (Pyrolysekohle, I3 °C),VR 3 = Versuchsreihe 3 (Aktivkohle, 23,5 °C), Darstellung von Mittelwerten und Standardabweichung (n = 4)

FAZIT

- Das Adsorptionsverhalten der Pyrolysekohle und das Emissionsverhalten des Rinderfestmistes sind stark temperaturabhängig
- Eine Beimengung von 5% Biokohle zu Rinderfestmist führt zu einer Reduktion von Treibhausgasen
- Ein emissionssenkender Effekt bei oberflächlicher Applikation von Biokohle ist nur bei niedrigen Temperaturen zu verzeichnen
- Eine Beimengung von 25% Pyrolysekohle führt zu einer maximalen Methan- und Lachgasreduktion unter warmen Bedingungen

HANDLUNGSEMPFEHLUNG:

Verwendung von Pyrolysekohle bei Sommertemperaturen:

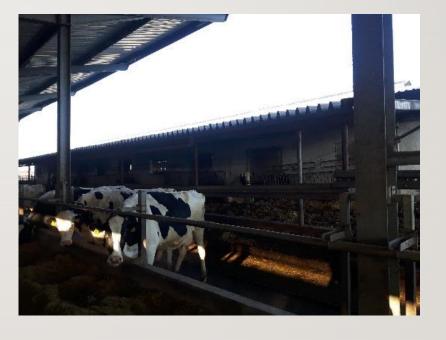
- Reduktion der Emissionen schon bei niedrigem Biokohleanteil
- Stärkste Emissionsreduktion bei 25% Biokohleanteil

Verwendung von Pyrolysekohle bei Wintertemperaturen:

- Reduktion der Emissionen bei Biokohleanteil von über 25%
- Stärkste Emissionsreduktion bei oberflächlicher Applikation (hier 25% Biokohleanteil)

Verwendung von Aktivkohle bei Sommertemperaturen:

- Reduktion der Emissionen bei Aktivkohleanteil von über 5%
- Stärkste Emissionsreduktion bei 50% Aktivkohleanteil



VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

QUELLEN

- **Kasang, D. (2019).** www.bildungsserver.hamburg.de.Von Treibhausgase-Einleitung und Übersicht, Tab. I https://bildungsserver.hamburg.de/treibhausgase/2051680/einleitung/ abgerufen
- Ok, Y. S., Uchimiya, S. M., Chang, S. X., & Bolan, N. (2016). Biochar: production, characterization and applications. Taylor & Francis Group, LLC.
- Oltmanns, M., Müller-Lindenlauf, M., & Raupp, J. (2004). Konsequenzen der Mistaufbereitung für die Emission klimarelevanter Gase . Mitt. Ges. Pflanzenbauwiss. 16, S. 161-162.
- Schmidt, H.-P., Kammann, C., Gerlach, A., & Gerlach, H. (2016). Der Einsatz von Pflanzenkohle in der Tierfütterung. Arbaz, Switzerland,: Ithaka-Journal.
- Umweltbundesamt (UBA). (2016). Chancen und Risiken des Einsatzes von Biokohle und anderer "veränderter" Biomasse als Bodenhilfsstoffe oder für die CSequestrierung in Böden. ISSN 1862-4804, Dessau-Roßlau
- Umweltbundesamt (UBA). (2018). Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen. Von https://www.umweltbundesamt.de/daten/land-forstwirtschaft/beitrag-der-landwirtschaft-zu-dentreibhausgas#textpart-1 abgerufen

ANHANG

FREDFOGUKLE

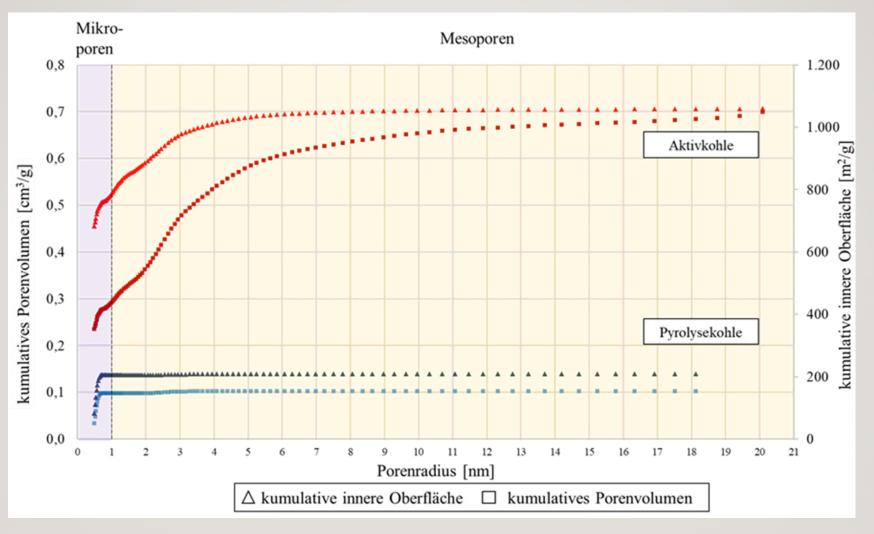


Abb. 10: Kumulative innere Oberfläche und kumulatives Porenvolumen von Aktivkohle und Pyrolysekohle. Bestimmung mittels BET-Analyse

Farprodukte

		Biokohle-Anteil [%]						
	VR	0	5	25	25o	50	100	
	1	27,47	32,64	30,21	32,96	32,56	56,03	MW
		$\pm 0,\!47$	\pm 8,98	\pm 1,05	$\pm 2,61$	± 1,33	\pm 4,15	SD
TM105	2	28,16	28,53	33,58	32,48	35,02	61,08	MW
1101103		$\pm 0,74$	± 1,65	± 0,61	$\pm 1,\!48$	±0,68	$\pm 3,\!27$	SD
	3	27,77	29,23	30,85	30,52	36,02	94,55	MW
		$\pm 0,67$	$\pm 0,7$	$\pm 0,95$	$\pm 0,88$	$\pm 1,11$	± 0,28	SD
	1	69,94	69,56	73,16	76,92	75,87	90,21	MW
		±0,93	± 1,26	$\pm 2,01$	$\pm 0,80$	$\pm 0,92$	$\pm 1,19$	SD
oTM	2	66,24	70,27	72,43	68,69	78,09	84,63	MW
OTIVI		$\pm 2,95$	$\pm 2,97$	$\pm 3,04$	$\pm4,\!01$	$\pm 1,00$	± 7,68	SD
	3	69,30	65,25	76,83	76,21	78,00	98,26	MW
		± 2,73	± 6,05	± 1,19	± 3,68	± 1,79	± 1,86	SD
	1	1117,00	1062,00	962,75	1071,28	900,45	53,74	MW
		$\pm 82,84$	$\pm 36,74$	$\pm 64,67$	$\pm 132,53$	± 70,95	$\pm 42,68$	SD
NH ₄ -N	2	1086,75	992,43	905,90	1013,88	809,98	3,25	MW
1114-11		\pm 11,44	$\pm 130,5$	$\pm 15,54$	$\pm 35,16$	± 86,96	± 0,09	SD
	3	979,07	913,45	675,98	932,90	752,20	184,87	MW
		±47,99	± 84,43	± 50,94	$\pm 108,11$	$\pm 58,1$	± 76,3	SD
	1	5213,50	5927,75	4711,50	4742,75	4132,75	1244,10	MW
		$\pm 343,1$	$\pm 1469,93$	$\pm 189,92$	$\pm 203,37$	$\pm 250,05$	$\pm 256,35$	SD
N-Kjeld.	2	5032,75	5003,50	4626,50	4599,50	4163,75	1256,33	MW
IV-INJUIG.		$\pm 150,4$	$\pm 117,67$	$\pm 136,25$	$\pm 277,46$	$\pm 249,74$	\pm 147,85	SD
	3	5133,75	5158,50	5213,75	5290,50	5086,75	1405,67	MW
		$\pm 174,59$	$\pm 390,64$	$\pm 189,29$	$\pm 130,24$	$\pm 273,87$	$\pm 58,73$	SD
	1	19,44	21,25	29,40	30,97	37,16	593,03	MW
		1,78	1,34	1,98	3,55	2,24	238,52	SD
C/N .	2	20,23	24,71	40,74	36,16	49,95	567,18	MW
C/1 V .		1,34	2,45	5,62	5,34	4,00	207,06	SD
	3	21,09	23,22	30,57	25,74	47,78	1032,97	MW
		0,91	1,21	1,33	4,42	8,77	324,98	SD

Tab. 3: Stoffkennwerte der Substrate zu Versuchsende

VR: Versuchsreihe:

I (Pyrolysekohle, 23,5 °C)

2 (Pyrolysekohle, 13 °C)

3 (Aktivkohle, 23,5 °C)

TM105: Trockenmasse-Gehalt bei 105 °C

Trocknungstemperatur [% FM]

oTM: organische Trockenmasse [% TM]

NH₄-N: Ammoniumstickstoff-Gehalt der

Frisch-masse [mg/kg FM]

N-Kjeld.: Stickstoffgehalt, Stickstoffbestimmung

nach Kjeldahl [mg/kg FM]

C/N: Verhältnis von Kohlenstoff/Stickstoff

MW: Mittelwert

SD: Standardabweichung

REC.

Ergebnisse der

Laboruntersuchungen:

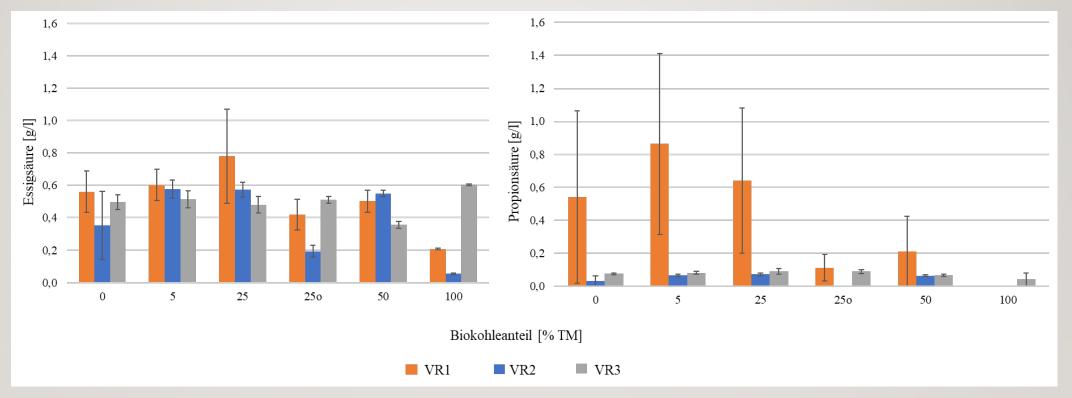


Abb. I I: Massenkonzentration der Gärsäuren der Rinderfestmist-Biokohle-Gemische der Versuchsreihen (VR) I (23,5 °C, Pyrolysekohle), 2 (13 °C, Pyrolysekohle), und 3 (23,5 °C, Aktivkohle). Darstellung von Mittelwerten und Standardabweichung (n = 4)

Ergebnisse der

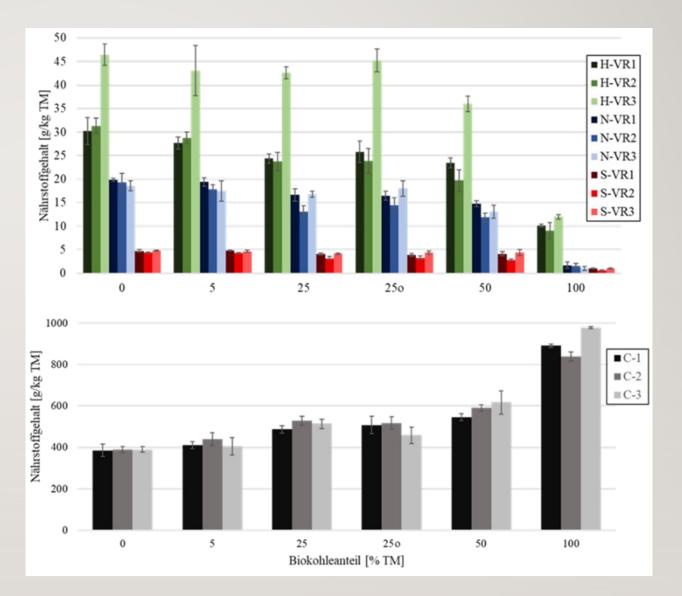
Laboruntersuchungen:

Abb. 12: Nährstoffgehalt der Biokohletypen der Versuchsreihen (VR):

I (23,5 °C, Pyrolysekohle)

2 (13 °C, Pyrolysekohle)

3 (23,5 °C, Aktivkohle)


H = Wasserstoff

N = Stickstoff

S = Schwefel

C = Kohlenstoff

Darstellung von Mittelwerten und Standardabweichung (n = 4)

Tab. 4: Trockenmassevergleich der Biokohle-Rinderfestmistgemische

			7	ΓM [g/kg FN	1] der Variai	nten	
		0	5	25	50	250	100
VR 1	zu Versuchsstart*	276,2	281,4	299,4	317,2	299,4	450,5
VICI	nach Versuchsende**	4 274,7	326,4	302,1	325,6	329,6	560,3
VR 2	zu Versuchsstart*	276,2	281,4	299,4	317,2	299,4	450,5
	nach Versuchsende**	281,6	285,3	335,8	350,2	324,8	610,8
VR3	zu Versuchsstart*	281,8	290,8	328,0	368,2	328,0	953,4
	nach Versuchsende**	4 277,7	292,3	₩ 308,5	₩ 360,2	₩ 305,2	4 945,5

^{*}Berechnung anhand der Trockenmassewerte der Ausgangssubstrate

Varianten: Rindermist-Biokohle Gemische mit einem Biokohleanteil 0, 5, 25, 50 und 100 % TM 250 = 25% Biokohleanteil oberflächlich appliziert

VR I: Versuchsreihe I (Pyrolysekohle, 23,5 °C)

Versuchsreihe 2 (Pyrolysekohle, 13 °C) VR 2:

Versuchsreihe 3 (Aktivkohle, 23,5 °C) VR 3:

^{**}Werte stellen den Mittelwert der Einzelmesswerte nach Versuchsende dar (n=4)